Bolt — version 1.0
http://bolt.x9c.fr

Copyright (© 2009 Xavier Clerc — bolt@x9c.fr
Released under the LGPL version 3

December 17, 2009

Abstract: This document presents Bolt, its purpose and the way it works. This document is
structured in three parts explaining how to build, how to use, and how to customize Bolt.

Introduction

Bolt is a logging tool for the Objective Caml language'. Its name stems from the following acronym:
Bolt is an Ocaml Logging Tool. It is inspired by and modeled after the Apache log4j utlity?.

Bolt provides both a comprehensive library for log production, and a camlp4-based syntax exten-
sion that allows to remove log directives. The latter is useful to be able to distribute an executable
that incurs no runtime penalty if logging is used only during development.

Bolt, in its 1.0 version, is designed to work with version 3.11.1 of Objective Caml.
Bolt is released under the LGPL version 3.
Bugs should be reported at http://bugs.x9c.fr.

Building Bolt

Bolt can be built from sources using make, and Objective Caml version 3.11.1. Under usual cir-
cumstances, there should be no need to edit the Makefile. Bolt is compiled by executing the
command make all and installed by executing the command make install with root privileges.
The following targets are available:

all compiles all files, and generates html documentation
bytecode compiles the bytecode version (ocamlc)
native compiles the native version (ocamlopt)

java compiles the java version (ocamljava)

html-doc generates html documentation

clean-all deletes all produced files (including documentation)

!The official Caml website can be reached at http://caml.inria.fr and contains the full development suite
(compilers, tools, virtual machine, etc.) as well as links to third-party contributions.
“http://logging.apache.org/log4]j

http://bolt.x9c.fr
mailto:bolt@x9c.fr
http://bugs.x9c.fr
http://caml.inria.fr
http://logging.apache.org/log4j

clean deletes all produced files (excluding documentation)
clean-doc deletes documentation files

install copies library files

ocamlfind installs through ocamlfind

tests runs the tests

depend populates the dependency files (they are initially empty)

The Java® version will be built only if the ocamljava® compiler is present and located by the

makefile. The syntax extension will be compiled only to bytecode.

Using Bolt

Bolt is based on the following concepts:
Event: the event is the entity built each time the application executes a log statement.

Level: the level characterizes how critical an event is.
An event will be recorded iff its level is below the level of logger.
The levels are, in asending order: FATAL, ERROR, WARN, INFO, DEBUG, and TRACE.

Filter: each logger has an associated filter, ensuring that only the events satistying the filter
will be recorded.

Layout: each logger has an associated layout that defines how an event is rendered into a
string.

Output: each logger has an associated output that defines where event are actually recorded
(two loggers should not have the same destination).

Loggers have names that are strings composed of dot-separated components; they are thus akin to
module names, and it is actually good practice to use the logger M to log events of the module M. It
is possible to register several loggers with the same name; this feature is useful to record the events
related to a given module to several different destinations (using possibly different filters, layout,
and outputs).

Logger are also organized into a hierarchy (meaning that logger P is a parent of logger P.S). When
a log statement is executed, it is associated with a logger name; the event will be presented to all
logger with that name, and to all loggers with a parent name. Each logger will decide according
to its level and filter if the event should actually be recorded. Finally, all events are presented
to all loggers having the special empty name (corresponding to the string ""). The hierarchy of
the loggers is a key feature that allows to easily enable or disable logging for large parts of an
application.

3The official website for the Java Technology can be reached at http://java.sun.com.
40Caml compiler generating Java bytecode, by the same author — http://ocamljava.x9c.fr

http://java.sun.com
http://ocamljava.x9c.fr

Linking with the library
Linking with Bolt is usually done by adding one of the following to the linking command-line:
e -I +bolt bolt.cma (for ocamlc version);
e -I +bolt bolt.cmxa (for ocamlopt version);
e -I +bolt bolt.cmja (for ocamljava version).
In order, to use Bolt in multithread applications, it is necessary to also link with the BoltThread
module. This also implies to pass the —1inkall option to the compiler.
Adding log statements

There are two ways to add a log statement: either by calling explicitly the Bolt.Logger.log
function, or by using the bolt_pp.cmo camlp4 syntax extension. One is advised to use the latter
method: first, using the syntax extension is lightweight (elements such as line and column are au-
tomatically computed); second, it allows to remove the log statements at compilation (it is useful
to have a development version packed with a lot of debug log statements and a distributed version
that suffers no runtime penalty related to logging).

To log using the Bolt.Logger.log function, one has to call it with the following parameters
(¢f. code sample 1):

e a string parameter giving the name of the logger to use;

e a Bolt.Level.t parameter giving the level of the event to log;

e an optional string parameter (named file) giving the file associated with the log event;

e an optional int parameter (named line) giving the line number associated with the log event;

e an optional int parameter (named column) giving the column number associated with the
log event;

e an optional (string * string) list parameter (named properties) giving the property list
associated with the log event;

e an optional exn option parameter (named error) giving the exception associated with the
log event;

e a string parameter giving the message of the log event.

Code sample 1 Explicit logging.

let O =

Bolt.logger.log "mylogger" Bolt.Level.DEBUG "some debug info";

To log using the syntax extension, one has to use the Bolt-introduced log expression. This is done
by passing the -pp ’camlp4o /path/to/bolt pp.cmo’ option to the OCaml compiler. The new

LOG expression can be used in an OCaml program wherever an expression is waited. The BNF
definition of this expression is as follows:

log_expr ::= LOG string arguments attributes LEVEL level
arguments ::= list of expressions | €

attributes ::= attributes attribute | €

attribute = NAME string | PROPERTIES ezpr | EXCEPTION ezpr

level ::= FATAL | ERROR | WARN | INFO | DEBUG | TRACE

The string following the LOG keyword is the message of the log event. This string can be followed
by expressions; in this case the string is interpreted as a printf format string, using the following
expressions as values for the % placeholders of the format string.

The attributes are optional, and have the following meaning:

NAME defines the name of the logger to be used;

PROPERTIES defines the properties associated with the log event (the expression should have
the type (string * string) list);

EXCEPTION defines the exception associated with the log event (the expression should have
type exn).

Code sample 2 shows how the expression can be used. Compared to explicit logging through
the Bolt.Logger.log, when using the LOG expression file, line number, and column number are
determined automatically.
When no NAME attribute is provided, the logger name is computed from the source file name: the
.m1 suffix is removed and the result is capitalized. More, the bolt_pp.cmo syntax extension accepts
the following parameters:

e -logger <n> sets the logger name to n for all LOG expressions of the compiled file;

e —-for-pack <P> sets the prefix to the logger names used throughout the compiled file to “P.”.

Finally, the bolt_pp.cmo syntax extension recognizes a third parameter -level <1> where [should
be either NONE or a level. If [is NONE, all LOG expressions will be removed from the source file;
otherwise, only the LOG expression with a level inferior or equal to the passed value will be kept.

Code sample 2 Implicit logging.

let O =

LOG "some debug info" LEVEL DEBUG;

When compiling in unsafe mode, the —unsafe switch should be passed to camlp4 instead of the
compiler. Indeed, as camlp4 is building a syntax tree that is passed to the compiler, issuing the
-unsafe switch to the compiler has no effect because it is too late: the code has been built by
camlp4 in safe mode. In such a case, the compiler warns the user with the following message:
Warning: option -unsafe used with a preprocessor returning a syntax tree. The cor-
rect command-line switch is hence -pp ’camlp4o -unsafe /path/to/bolt_pp.cmo’.

Configuring log

There are two ways to configure log, that is to register loggers that will handle the log events
produced by the application. The first way is to explicitly call Bolt.Logger.register while the
second one is to use a configuration file that will be interpreted by Bolt at runtime.

To register (i.e. to create) a logger using the Bolt.Logger.register function, one as to call it
with the following parameters:

e a string parameter giving the name of the logger;

e a Bolt.Level.t parameter giving the maximum level for events to be logged;
e a string parameter giving the filter of the logger;

e a string parameter giving the layout of the logger;

e a string parameter giving the output of the logger;

e a string * float option couple that gives the parameters used for output creation: the
first component is the name of the output while the second one is the optional rotate value
(the actual semantics of both component is dependent on the actual output used).

To register a logger using a configuration file, one should set the BOLT_FILE environment variable
to the path of the configuration file. If the configuration file cannnot be loaded, an error message is
written on the standard error unless the BOLT_SILENT environment variable is set to either “YES”
or “ON” (defaulting to “OFF” case being ignored).

The format of the configuration file is as follows:
e the format is line-oriented;
e comments start with the '#’ character and end at the end of the line;
e sections start with a line of the form [a.b.c], "a.b.c” being the name of the section;
e a section ends when a new section starts;
e at the beginning of the file, the section named ”” is currently opened;
e section properties are defined by lines of the form ”key=value”;
e others lines should be empty (only populated with whitespaces and comments).

Each section defines a logger whose name is the section name. The following properties are used
to customize the logger:

e level defines the level of the logger;

e filter defines the filter of the logger;

layout defines the layout of the logger;

output defines the output of the logger;

name is the first parameter passed to create the actual output;

e rotate is the second parameter passed to create the actual output.

The level can have one of the following values: TRACE, DEBUG, INFO, WARN, ERROR, FATAL. The

possible values for the other properties are discussed in the following sections.

Code sample 3 examplifies a typical configuration file. It defines three loggers (with names *”,
“Pack.Main”, and “Pack.Aux”). When executed, the application will produce three files “bymodule.result”,
“bymodulel.result”, and “bymodule2.result”: the first file will contain the log information for

the whole application while the other ones will contain respectively the log information associated

with the “Pack.Main” and “Pack.Aux” loggers.

(1%

Code sample 3 Example of configuration file.

level=trace
filter=all
layout=simple
output=file
name=bymodule.result

[Pack.Main]
level=trace
filter=all
layout=simple
output=file
name=bymodulel.result

[Pack. Aux]
level=trace
filter=all
layout=simple
output=£file
name=bymodule2.result

Predefined filters

The following filters are predefined:
e all keeps all events;
e none keeps no event;
e trace_or_below keeps events with level inferior or equal to TRACE;
e debug_or_below keeps events with level inferior or equal to DEBUG;
e info_or_below keeps events with level inferior or equal to INFO;
e warn_or_below keeps events with level inferior or equal to WARN;

e error_or_below keeps events with level inferior or equal to ERROR;

fatal_or_below keeps events with level inferior or equal to FATAL;
file_defined keeps events with an actual filename;

file_undefined keeps events with no filename;

line defined keeps events with a strictly positive line number;
line_undefined keeps events with a negative or null line number;
column_defined keeps events with a strictly positive column number;
column undefined keeps events with a negative or null column number;
message_defined keeps events with a non-empty message;
message_undefined keeps events with an empty message;
properties_empty keeps events with an empty property list;
properties not_empty keeps events with an non-empty property list;
exception_some keeps events with an exception;

exception none keeps events with no exception.

Predefined layouts

Bolt predefines the following non-configurable layouts:

simple with format: LEVEL - MESSAGE;
default with format: TIME [FILE LINE] LEVEL MESSAGE;
html whose format is HTML, storing events into a table;

xml whose format is XML (compatible with log4j).

Two other layouts are predefined:

pattern whose actual format is specified by defining a property named pattern

This property is a string that can contain $(x) elements where z is a key (defined below) or
$(x:n) where z is a key and n is a padding instruction (the absolute value of n is the total
width; the padding is left is n is negative, and right if n is positive)

it is also possible to specify through the pattern-header-file (respectively pattern-footer-file)
property the name of a file whose contents is used as the header (respectively footer) that is
written at start/end as well as at each rotation

csv whose actual format is specified by properties named csv-separator and csv-elements
csv-separator is the string to be used as the separator between values
csv-elements is a whitespace-separated list of the keys of the values to render

The following keys are available for use by the pattern and csv layouts:

id event identifier;

e thread thread identifier;

e sec seconds of event timestamp;

e min minutes of event timestamp;

e hour hour of event timestamp;

e mday day of month of event timestamp;

e month month of year of event timestamp;

e year year of event timestamp;

e wday day of week of event timestamp;

e time event timestamp;

e relative time elapsed between initilization and event creation;
e level event level;

e logger event logger;

e file event file;

e filebase event file (without directory information);

e line event line;

e column event column;

e message event message;

e properties property list of event (format: [’[kl: v1; ...; kn: vn]”]);
e exception event exception;

e backtrace event exception backtrace.

Predefined outputs

There are two predefined outputs, namely void and file. The void output discards all data.
The file output writes data to a bare file, the name property (or the string value when using
Bolt.Logger.register) defines the path of the file to be used, and the rotate property (or the
float option value when using Bolt.Logger.register) gives the rates in seconds at which files
will be rotated. When using rotation, the name should contain a % character that is expanded to a
timestamp, ensuring that a different file is created at each rotatation. If no % character is employed,
the same file will be written over and over again.

Reviewing log

Once the log information has been produced by the application, the developper and/or the user
will have to review it. Although this can easily be done using Unix commands (such as grep, cut,
sed; etc), a GUI can be helpful. For this reason, the XML layout of Bolt produces log4j-compatible
XML files allowing the use of the Chainsaw application®.

Code sample 4 shows a XML file that could be used to wrap the XML data produced by Bolt (in
bolt.xml file) in such a way that Chainsaw can load it. This code sample is a reproduction of the
one provided in the Javadoc of the log4j org.apache.log4j.xml.XMLLayout class®.

Code sample 4 Wrapping produced XML data into a Chainsaw-compatible XML.

<?7xml version="1.0"7>
<!DOCTYPE log4j:eventSet SYSTEM "log4j.dtd" [<!ENTITY data SYSTEM "bolt.xml">]>
<logdj:eventSet version="1.2" xmlns:log4j="http://jakarta.apache.org/log4j/">

&data;
</logdj:eventSet>

Customizing Bolt

It is possible to customize Bolt by defining new filters, layouts, and outputs. This is easily done by
using respectively the Bolt .Filter.register, Bolt.Layout.register, and Bolt.Output.register
functions. More information about the actual types of these functions can be found in the ocamldoc-
generated documentation (available in the ocamldoc directory, generation being triggered by the
make html-doc command).

When custom elements have been registered using the previously mentioned functions, they can
be used from the configuration files or from the Bolt.Logger.register function. However, it
is necessary for the custom elements to be registered before any log event concerned with theses
custom elements is built. Otherwise, elements won’t be found and Bolt will resort to default values.

A good practice is to define the new filters, layouts, and outputs in modules that are not part of
the application. One should not forget to pass the ~1inkall switch to the compilers when linking
such modules. Another option is to avoid linking these modules with the application, and to use
the BOLT_PLUGINS environment variable to load them. The BOLT_PLUGINS environment variable
contains a comma-separated list of file that will be loaded through Dynlink.

Code sample 5 shows how to register a new filter that keeps only event with an even line number,
and a new layout programmed using the Printf.sprintf machinery.

"http://logging.apache.org/chainsaw/
Shttp://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/xml/XMLLayout . html

http://logging.apache.org/chainsaw/
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/xml/XMLLayout.html

Code sample 5 Customizing Bolt with new filter and layout.

let () =
Bolt.Filter.register
"myfilter"
(fun e -> (e.Bolt.Event.line mod 2) = 0)

let O =
Bolt.Layout.register
"mylayout"
({1,
1,
(fun e ->
Printf.sprintf "file \"¥%s\" says \"%s\" with level \"Y%s\" (line: %d)"
e.Bolt.Event.file
e.Bolt.Event .message
(Bolt.Level.to_string e.Bolt.Event.level)
e.Bolt.Event.line))

10

	Introduction
	Building Bolt
	Using Bolt
	Customizing Bolt

